Mathematik explorativ - Sammlung der Sätze

Satz 1.1:

- * $A \cap B \subseteq A \subseteq A \cup B$
- * $A \setminus B \subseteq A$
- * $A \Delta B = (A \cup B) \setminus (A \cap B)$
- * $A \subseteq B$ ist gleichbedeutend mit $A \cap B = A$, dies wieder mit $A \cup B = B$

Satz 1.2: Für Mengen A, B, C gelten die *Kommutativgesetze*:

$$A \cap B = B \cap A$$
; $A \cup B = B \cup A$; $A \triangle B = B \triangle A$

und auch die Assoziativgesetze

$$(A \cap B) \cap C = A \cap (B \cap C)$$
; $A \cup (B \cup C) = (A \cup B) \cup C$; $A \triangle (B \triangle C) = (A \triangle B) \triangle C$ sowie die *Distributivgesetze*

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C); A \cap (B \cup C) = (A \cap B) \cup (A \cap C);$$

$$A \cap (B\Delta C) = (A \cap B) \Delta (A \cap C)$$

die Idempotenzgesetze

$$A \cup A = A$$
; $A \cap A = A$

und die Verschmelzungsgesetze

$$A \cap (A \cup B) = A = A \cup (A \cap B)$$

Satz 1.3: Seien A, B Teilmengen von U. Dann gilt

- a) $A \cap CU(A) = \emptyset$; $A \cup CU(A) = U$
- b) $CU(A \cap B) = CU(A) \cup CU(B);$ (Gesetze von $CU(A \cup B) = CU(A) \cap CU(B)$ De Morgan)
- c) CU(CU(A)) = A.

Satz 1.4: Zu jedem $a \in \mathbb{Z}$ und $b \in \mathbb{N}$ gibt es eindeutig bestimmte ganze Zahlen q, r, sodass $a = b \cdot q + r \text{ mit } 0 \le r < b$.

Man nennt q den *Quotienten* und r den *Rest* der Division von a durch b.

Definition 1.11 / Satz:

$$a^n=a\cdot a\cdot ...\cdot a$$
, (a tritt n mal als Faktor auf, $n\in\mathbb{N}_0$, mit $a^0:=1$) und es gilt $a^n\cdot a^m=a^{n+m}$

Als Verallgemeinerung zu $\frac{1}{a} = a^{-1}$ vereinbart man als Schreibweise für $\frac{1}{a^n}$ kurz a^{-n}

Demnach gilt für $a \neq 0$ die Rechenregel $\frac{a^n}{a^m} = a^n \ a^{-m} = a^{n-m}$.

Satz 1.5: Die Zahl $\sqrt{2}$ ist keine rationale Zahl, $\sqrt{2}$ ist irrational.

Satz. 1.6:

Sei $b \in \mathbb{N}$ mit $b \ge 2$. Dann lässt sich jede natürliche Zahl a > 0 eindeutig darstellen in der Gestalt

$$a = \sum_{i=0}^{n-1} a_i b^i \quad \text{mit } a_i \in \ \{0,\,1,\,...,\,b\text{-}1\} \ \text{und } a_{n\text{-}1} \neq \ 0.$$

- Satz 1.7: Die Dezimalbruchentwicklung des gekürzten Bruches (rationale Zahl) $\frac{u}{v}, u, v \in \mathbb{N}, v > 1, \text{ besitzt genau dann eine endliche Dezimalbruchentwicklung,}$ wenn im Nenner v nur die Primfaktoren 2 oder 5 vorkommen.
- Satz 1.8: Ein gekürzter Bruch $\frac{u}{v}$ hat genau dann eine nicht periodische b-adische Darstellung, wenn alle Primfaktoren von v auch Primfaktoren von b sind.
- Satz 1.9: Für die Variation mit Zurücklegen von k aus n Dingen gibt es n^k Möglichkeiten.
- Satz 1.10:

$$(a) \binom{n}{k} = \binom{n}{n-k}$$

$$(b) \binom{n}{0} = \binom{n}{n} = 1 \quad \text{und} \quad \binom{n}{1} = \binom{n}{n-1} = n$$

- Satz 1.11: f: $A \to B$ und g: $C \to D$ seien Funktionen. $f = g \iff (A = C \text{ und für alle } a \in A : f(a) = g(a))$
- Satz 1.12: Seien f: $A \to B$, g: $B \to C$ und h: $C \to D$ drei Funktionen. Dann gilt $h \circ (g \circ f) = (h \circ g) \circ f$
- Satz 1.13: Sei f: A \rightarrow B bijektiv. Dann ist auch f⁻¹: B \rightarrow A eine Funktion und ebenfalls bijektiv; es gelten folgende Regeln: $f^{-1} \circ f = id_A$; $f \circ f^{-1} = id_B$; $(f^{-1})^{-1} = f$
- Satz 1.14: Seien f: A \rightarrow B und g: B \rightarrow C bijektiv. Dann ist auch g°f: A \rightarrow C bijektiv und es gilt $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$
- Satz 1.15: Sei f eine Funktion von A nach B. Falls es eine Funktion g: $B \to A$ gibt mit $g \circ f = id_A$ und $f \circ g = id_B$, so ist f bijektiv und es gilt $g = f^{-1}$.
- **Satz 2.1:** Ist $a = bq + r \text{ mit } 0 \le r < b$, dann ist ggT(a,b) = ggT(b,r).
- **Satz 2.2:** $kgV(a,b) \cdot ggT(a,b) = a \cdot b$
- Satz 2.3: Ist d = ggT(a,b), dann existieren Zahlen $x,y \in \mathbb{Z}$, sodass ax + by = d.
- Satz 2.4: Sind $a,b,c \in \mathbb{Z}$ mit c/ab und ggT(a,c) = 1, so folgt c/(abx + cby) und damit c/b.
- Satz 2.5: Ist p prim und p/ab, so folgt (p/a oder p/b) oder (p/a und p/b): d.h. ist ein Produkt ab teilbar durch eine Primzahl p, so ist mindestens einer der Faktoren a,b durch p teilbar.
- **Satz 2.6:** Jede natürliche Zahl $n \in \mathbb{N}$, n > 1, lässt sich in Primfaktoren zerlegen,

- d.h. es gibt $k \in \mathbb{N}$, sodass $n = p_1 p_2 p_3 \dots p_k$. Diese Darstellung ist bis auf die Reihenfolge der Faktoren eindeutig.
- **Satz 2.7:** Zwei Zahlen a, b sind genau dann relativ prim (d.h.: ggT(a,b) = 1), wenn jede Primzahl p, die in der Zerlegung von a vorkommt, nicht in der Zerlegung von b vorkommt und umgekehrt.
- Satz 2.8: Es gibt unendlich viele Primzahlen.
- Satz 2.9: Die lineare diophantische Gleichung ax + by = c mit a, b, c, x, y $\in \mathbb{Z}$ ist genau dann lösbar, wenn für d = ggT(a,b) gilt: d/c.
- Satz 2.10: a ≡ b mod m genau dann, wenn die positiv kleinsten Reste von a und b bei der Division durch den Modul m übereinstimmen.
- Satz 2.11: Sei $p(x) = c_n x^n + c_{n-1} x^{n-1} + ... c_1 x + c_0 \text{ mit } c_i \in \mathbb{Z}$ Ist $a \equiv b \mod m$, so ist $p(a) \equiv p(b) \mod m$.
- Satz 2.12: Ist $r_1, r_2, ..., r_m$ ein vollständiges Restsystem mod m und ist ggT(a, m) = 1 und $b \in \mathbb{Z}$, dann ist auch $ar_1 + b$, $ar_2 + b$, ..., $ar_m + b$ ein vollständiges Restsystem mod m.
- **Satz 2.13:** Ist $ka \equiv kb \mod m$ und d = ggT(k,m), so gilt $a \equiv b \mod \left(\frac{m}{d}\right)$.
- Satz 2.14: Die Kongruenz ax \equiv b mod m mit x \in \mathbb{Z} ist dann und nur dann lösbar, wenn d = ggT(a,m)/b. Ist die Kongruenz lösbar, so hat sie d verschiedene Lösungen.
- Satz 2.15: Die Kongruenz $ax \equiv b \mod m$ mit ggT(a,m) = 1 ist für jedes $b \in \mathbb{Z}$ durch eine und nur eine (d.h.:,genau eine") Restklasse $x \mod m$ lösbar.
- Satz 2.16: Sind die Moduln m_1 , m_2 , ..., m_k paarweise relativ prim, dann ist das System $x \equiv c_i \mod m_i$, i = 1, 2,..., k, stets lösbar und die Lösung ist modulo $M = m_1 m_2 ... m_k$ eindeutig.
- Satz 2.17: Eine Zahl $a \in \mathbb{Z}$ ist genau dann quadratischer Rest mod 2^k , $k \ge 3$, wenn $a \equiv 1 \mod 8$.
- Satz 2.18: Es sei $m = p_1^{e_1} p_2^{e_2} ... p_s^{e_s}$ die Primzahlzerlegung von $m \ge 2$. Dann ist $a \in \mathbb{Z}$ genau dann ein quadratischer Rest mod m, wenn a ein QR($p_i^{e_i}$) für i = 1, 2, ..., s ist.
- Satz 2.19: Ist mit $k \in \mathbb{N}$, $k \ge 1$ und p > 2, p prim, a ein QR (p^k) , so ist a auch QR(p), und umgekehrt.
- Satz 2.20: Die Zahlen 1^2 , 2^2 , ... $((p-1)/2)^2$ sind alle inkongruent mod p. Das heißt, mit $i^2 \equiv a \mod p$, i = 1,2,...(p-1)/2 erhält man (p-1)/2 Quadratreste.
- Satz 2.21: Für p > 2 gibt es genau (p-1)/2 Quadratreste QR(p) und

(p-1)/2 Nichtreste NR(p).

Satz 2.22 (Kriterium von Euler):

Ist $a \in \mathbb{Z}$ prim zu p > 2, so ist a

QR(p) genau dann, wenn $a^{(p-1)/2} \equiv 1 \mod p$,

NR(p) genau dann, wenn $a^{(p-1)/2} \equiv -1 \mod p$.

- **Satz 2.23:** Für Quadratreste QR(p) und Nichtreste NR(p) gelten für p > 2:
 - $QR(p) \cdot QR(p) = QR(p)$

 $QR(p) \cdot NR(p) = NR(p)$

 $NR(p) \cdot NR(p) = QR(p)$

- Satz 2.24: 2 ist ein QR(p) für Primzahlen der Gestalt $p = 8k^{+}_{-} 1$ und ein NR(p) für Primzahlen der Gestalt $p = 8k^{+}_{-} 3$.
- Satz 3.1: Das Skalarprodukt zweier Vektoren ist Null genau dann wenn wenigstens einer der beiden Vektoren der Nullvektor ist oder wenn die beiden Vektoren senkrecht aufeinander stehen.
- Satz 3.2: Der Vektor a = (a,b) ist ein Normalvektor zur Geraden g : ax + by c = 0.
- Satz 3.3: Zwei Geraden $x = p + \lambda r$ und $x = q + \mu s$ sind genau dann parallel zueinander, wenn $r_1s_2 r_2s_1 = 0$.
- Satz 3.4: Zwei Vektoren r und s dann und nur dann linear abhängig, wenn sie parallel sind, also wenn gilt: $r = \lambda s$.
- Satz 3.5: Das Vektorprodukt $a \times b$ ist dann und nur dann gleich dem Nullvektor o, wenn die beiden Vektoren a und b linear abhängig sind.
- Satz 3.6: Der Vektor $v \times w$ steht senkrecht auf v und w. Seine Länge ist dem Betrag nach gleich der Fläche des durch v und w gebildeten Parallelogramms.
- Satz 3.7: Das Volumen V eines durch die (Orts)-Vektoren a, b, c aufgespannten Parallelepipeds ist $V = |(a \times b) \cdot c|$.
- Satz 4.1: Die Menge aller Permutationen einer Menge M bildet bezüglich der Multiplikation von Permutationen eine Gruppe.

 Man nennt sie vollständige symmetrische Gruppe S(M) auf M.
- Satz 4.2: Die Anzahl der Permutationen einer Menge M mit m Elementen ist $m! = m \cdot (m-1) \cdot ... \cdot 2 \cdot 1$ (genannt "m Fakultät", auch "m Faktorielle").
- Satz 4.3: (U, \otimes) mit $U \neq \{\}$ ist Untergruppe von (G, \otimes) , falls für alle $x, y \in U$ gilt: $x \otimes y \in U$ und $x^{-1} \in U$.
- Satz 4.4: Ist G eine endliche Gruppe, so ist die Ordnung ord (U) einer Untergruppe U ein Teiler der Ordnung ord (G) der Gruppe G.

- Satz 4.5: Ist (G, \otimes) eine endliche Gruppe mit dem neutralen Element e und der Ordnung g = ord(G) und ist $x \in G$ beliebig, so gibt es eine positive ganze Zahl r, sodass $x^r = e$.
- *Satz 4.6:* Alle zyklischen Gruppen sind abelsch.
- Satz 4.7: Ist G eine Gruppe und $a \in G$ ein Element mit endlicher Ordnung k, dann erzeugt a eine zyklische Untergruppe U der Ordnung k, deren Elemente e, a, a^2 , ..., a^{k-1} sind.
- **Satz 4.8:** Für alle Elemente x einer Gruppe G mit der Ordnung g = ord(G) gilt $x^g = e$, wobei e das neutrale Element von G ist.
- **Satz 4.9:** Ist p prim und $x \in \mathbb{N}$ mit $p \not = x$, dann gilt $x^{p-1} \equiv 1 \mod p$.
- **Satz 4.10:** Ist G eine endliche Gruppe, deren Ordnung eine Primzahl ist, so hat G außer {e} und G selbst keine Untergruppen.
- **Satz 4.11:** Sei U eine Untergruppe von (G, \otimes) . Dann gilt:
 - (1) Ist $a \in U \Rightarrow aU = U$.
 - (2) Je zwei Nebenklassen von G nach U sind disjunkt oder identisch.
 - (3) Alle Nebenklassen von G nach U sind gleichmächtig.

Satz von Lagrange 4.12:

Für jede Untergruppe U einer endlichen Gruppe G gilt $ord(G) = |G : U| \cdot ord(U)$.

- **Satz 4.13:** \mathbb{Z}_n ist dann und nur dann ein Körper, wenn n eine Primzahl p ist, d.h. $(\mathbb{Z}_p, +, \cdot)$ ist ein Körper.
- Satz 4.14: Sind p, q zwei Polynome über einem Körper K und ist der Grad $Gd(q) \ge 0$, dann gibt es eindeutig bestimmte Polynome s, $r \in K[x]$ mit $p = q \cdot s + r$ und Gd(r) < Gd(q).
- Satz 4.15: Ein Element $\alpha \in K$ ist dann und nur dann eine Nullstelle eines Polynoms p über dem Körper K, wenn $(x \alpha)$ ein Teiler von p ist.
- Satz 4.16: Ein Polynom vom Grad n über einem Körper K hat höchstens n Nullstellen, auch wenn man diese jeweils mit ihrer Vielfachheit zählt. Im Fall $K = \mathbb{C}$ gilt sogar die Gleichheit, mehr dazu in Kürze.
- Satz 4.17: Jedes Polynom p(x) vom Grad $n \ge 1$ hat über dem Körper \mathbb{C} genau n Nullstellen. (Fundamentalsatz der Algebra).

- Satz 4.18: (a) Für jede Primzahl p und jedes $n \in \mathbb{N}$ gibt es (mindestens) ein normiertes irreduzibles normiertes Polynom. Das daraus resultierende Galoisfeld $GF(p^n)$ ist ein Körper mit p^n Elementen.
 - (b) Umgekehrt hat jeder endliche Körper K eine Primzahlpotenzordnung der Form p^n , wobei p eine Primzahl und $n \in \mathbb{N}$ ist. K ist dann zu $GF(p^n)$ isomorph.
 - (c) Wegen (b) gilt, dass je zwei endliche Körper mit gleich vielen Elementen isomorph (also identifizierbar) sind. Daher ist es auch egal, welches irreduzible Polynome gewählt wird.
 - (d) Die multiplikative Gruppe der Elemente ohne Null eines endlichen Körpers ist zyklisch (es sei wieder an Kapitel 4 erinnert), das bedeutet, dass es ein erzeugendes Element a gibt, sodass es für jedes $k \in K^* = K \setminus \{0\}$ ein $m \in \mathbb{N}$ gibt mit $k = a^m$.

Satz 5.1: In KV gilt

- a) $\forall \lambda \in K: \lambda \mathbf{o} = \mathbf{o}$
- b) $\forall v \in V: 0v = \mathbf{0}$
- c) $\forall v \in V \ \forall \lambda \in K$: $(-\lambda)v = -(\lambda v) = \lambda(-v)$
- d) Speziell gilt (-1)v = -v.
- e) $\forall v, w \in V \exists ! x \in V: v+x = w \text{ (nämlich } x = w+(-v) = w-v).$
- f) $\forall v \in V \ \forall \lambda \in K$: $\lambda v = \mathbf{0} \Leftrightarrow (\lambda = 0 \lor v = \mathbf{0})$
- g) $\forall v, w \in V \ \forall \ \lambda \in K$: $\lambda(v-w) = \lambda v \lambda w$

Um Elemente \in V von den Skalaren zu unterscheiden, schreibt man statt v,w,... oft $\mathbf{v},\mathbf{w},...$ oder \vec{v} , \vec{w} ,... oder gotische Buchstaben.

Satz 5.2 (Unterraumkriterium): Sei U eine nichtleere Teilmenge des Vektorraums KV.

$$\begin{array}{lll} U \leq_K V & \iff \forall \ u,u' \in U & \forall \ \lambda \in K \colon \ u+u' \in U \land \lambda u \in U \\ \Leftrightarrow \forall \ u,u' \in U & \forall \ \lambda,\lambda' \in K \colon \ \lambda u+\lambda' u' \in U \end{array}$$

Satz 5.3 und Definition: Die Menge $V/\sim = \{[v] \mid v \in V\}$ wird mit \oplus und \otimes dadurch zu einem Vektorraum über K, genannt *Faktorraum* von V nach \sim .

Satz 5.4 und Definition:

- a) Sei \sim eine verträgliche Äquivalenzrelation in $_KV$. Dann ist $\{v \in V \mid v \sim \mathbf{o}\} = [\mathbf{o}]$ ein Unterraum von V.
- b) Sei U ein Unterraum von V und sei \sim_U definiert durch $v \sim_U w \Leftrightarrow v w \in U$. Die Äquivalenzklasse von $v \in V$ bzgl. \sim_U ist dann durch $v + U := \{v + u \mid u \in U\}$ gegeben und heißt eine *lineare Mannigfaltigkeit*.
- Satz 5.5: Die Lösungsmenge eines homogenen linearen Gleichungssystems ist ein Unterraum des K_n. Die Lösungsmenge eines beliebigen linearen Gleichungssystems ist eine lineare Mannigfaltigkeit, ihr "zugehöriger" Unterraum ist der Lösungsraum des "homogenisierten" Gleichungssystems.

- Satz. 5.6:
- a) Für jedes $S \subseteq V$ ist L(S) ein Unterraum von KV.
- b) L(S) ist der (bzgl. ⊆) kleinste Unterraum von V, der S umfasst.
- c) L(S) ist der Durchschnitt aller Unterräume von V, die S umfassen.
- **Satz 5.7:** Für $S \subseteq V$ gilt: $S = L(S) \Leftrightarrow S \leq_K V$
- **Satz 5.8:** Sei $S \subseteq V$. Dann sind folgende Bedingungen gleichwertig:
 - a) $\exists s \in S: L(S) = L(S \setminus \{s\})$
 - b) $\exists s \in S: s \in L(S \setminus \{s\})$
 - c) $\exists n \in \mathbb{N} \exists s_1,...,s_n \in S \exists \lambda_1,...,\lambda_n \in K$: $(\lambda_1 s_1 + ... + \lambda_n s_n = \mathbf{o} \land \exists i \in \{1,...,n\}: \lambda_i \neq 0)$
- **Satz 5.9:** Seien $S,T \subseteq V$ mit $S \subseteq T$.
 - a) S ist linear abhängig \Rightarrow T ist linear abhängig.
 - b) T ist linear unabhängig \Rightarrow S ist linear unabhängig.
- Satz (Austauschsatz von Steinitz) 5.10:

Ist B = ($b_1,...,b_n$) eine Basis von $_KV$ und sind $c_1,...,c_s$ (mit $s \le n$) linear unabhängig, so gibt es $i_1,...,i_{n-s} \in \{1,...,n\}$, sodass $\{c_1,...,c_s,b_{i_1},...,b_{i_{n-s}}\}$ wieder eine Basis ist.

(Mit anderen Worten: Wir können s Elemente der Basis durch s andere ersetzen, sodass wir eine neue Basis erhalten.)

- **Satz 5.11 und Definition:** Je zwei Basen eines endlichdimensionalen Vektorraums V haben gleich viele Elemente. Diese heißt die Dimension dimV von V.
- Satz 5.12: $B = (b_1, ..., b_n)$ sei eine Basis von KV. Dann lässt sich jedes $V \in V$ eindeutig als $V = \sum_{i \in I} \lambda_i b_i$ schreiben, d.h.:

$$\forall \ v \in V \ \forall \ i \in I \ \exists \,! \ \lambda_i \in K \colon \quad v = \sum_{i \in I} \ \lambda_i b_i \ .$$

Satz 6.1:

- (a) K_n^m ist ein Vektorraum über K
- (b) Eine Basis von $K(K_m^n)$ ist $(E_{11},E_{12},...,E_{1n},E_{21},...,E_{2n},...,E_{m1},...,E_{mn})$, wobei $E_{rs} := (e_{ij})$ durch

$$e_{ij} = \begin{cases} 1 & (i, j) = (r, s) \\ 0 & \text{sonst} \end{cases}$$
 gegeben ist.

(c) $\dim_{K}(K_{m}^{n}) = m \cdot n$. Neutrales Element in $(K_{m}^{n}, +)$ ist die Nullmatrix; zu $A = (a_{ij})$ ist in $(K_{m}^{n}, +)$ die Matrix $-A = (-a_{ij})$ invers.

Also haben K_{m}^{n} , K_{m}^{m} , K_{mn} , K^{mn} alle dieselbe Dimension.

 $\textit{Satz 6.2:} \qquad \text{F\"{u}r } A,B \in K_{m}^{n} \text{ und } \lambda \in K \text{ gilt } : (A+B)^{t} = A^{t}+B^{t}, \quad (\lambda A)^{t} = \lambda A^{t}$

- Satz. 6.3: Sei K ein Körper und seien m, n, p, $q \in \mathbb{N}$.

 - $\forall A \in K_{m}^{n} \ \forall B, C \in K_{n}^{p}: A \cdot (B+C) = A \cdot B + A \cdot C \ (1. \ Distributivg esetz)$ $\forall A, B \in K_{m}^{n} \ \forall C \in K_{n}^{p}: (A+B) \cdot C = A \cdot C + B \cdot C \ (2. \ Distributivg esetz)$ $\forall A \in K_{m}^{n} \ \forall B \in K_{n}^{p} \ \forall C \in K_{p}^{q}: (A \cdot B) \cdot C = A \cdot (B \cdot C) \ (Assoziativg esetz)$
 - $\forall A \in K_{m}^{n} \ \forall B \in K_{n}^{p} \ \forall \lambda \in K: \ (\lambda A) \cdot B = \lambda(A \cdot B) = A \cdot (\lambda B)$ $\forall A \in K_{m}^{n} \ \forall B \in K_{n}^{p}: \ (A \cdot B)^{t} = B^{t} \cdot A^{t}$

 - $\forall A \in K_m^n$: $A \cdot E_n = E_m \cdot A = A$ (dabei seien E_n bzw. E_m die n×n- bzw. m×m-Einheitsmatrix).
- Sei A x = b ein lineares Gleichungssystem mit regulärer Koeffizientenmatrix A. Satz. 6.4: Dann hat dieses Systems genau eine Lösung, nämlich $x = A^{-1} b$
- Ist $A \in K_n^n$ invertierbar, so ist auch A^t invertierbar und es gilt $(A^t)^{-1} = (A^{-1})^t$. Satz 6.5:
- Seien $A \in K_n^n$ regulär und $a_1,...,a_r \in K_n$. Dann gilt: Satz 6.6: $a_1,...,a_r$ sind linear unabhängig $\Leftrightarrow A \cdot a_1,...,A \cdot a_r$ sind linear unabhängig.
- Sei $A \cdot x = b$ ein lineares Gleichungssystem mit $A \in K_{m}^{n}$. Satz 6.7:
 - Der Nullraum von A ist ein Unterraum von K_n. a)
 - Die Lösungsmenge $\{x \in K_n | A \cdot x = b\}$ des Gleichungssystems $A \cdot x = b$ b) ist entweder leer oder eine lineare Mannigfaltigkeit; zugehöriger Unterraum ist der Nullraum von A.
- Für alle A gilt: $det(A) = det(A^{t})$. Satz. 7.1:
- Satz 7.2: Multipliziert man alle Elemente einer Zeile der Determinante mit $c \neq 0$, so multipliziert sich det(A) mit c: $det(c \cdot A) = c \cdot det(A)$.
- Satz 7.3: Sind in A zwei Zeilen gleich oder ist eine Zeile = \mathbf{o} , so ist det(A) = 0.
- Satz. 7.4: Addiert man zu einer Zeile ein Vielfaches einer anderen Zeile, so bleibt det(A) unverändert
- Satz 7.5: Vertauscht man zwei Zeilen (Spalten) von A, so ändert det(A) sein Vorzeichen.
- Satz 7.6:

Ist A =
$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$
. Dann ist $det(A) = a_{11}a_{22} \dots a_{nn}$.

- Für $A,B \in K_n^n$ gilt: $det(A \cdot B) = det(A)det(B)$. Satz. 7.7:
- **Satz 7.8:** Ist A regulär, so gilt $det(A^{-1}) = \frac{1}{det(A)}$.

- **Satz** 7.9 (Laplace'scher Entwicklungssatz):
 - a) "Entwicklung von det(A) nach der i-ten Spalte". Für jedes fixe $i \in \{1,...,n\}$ gilt:

$$\det(A) = \sum_{j=1}^{n} (-1)^{j+1} \ a_{ji} \det(A^{j,i})$$

b) "Entwicklung von det(A) nach der k-ten Zeile". Für jedes fixe k∈ {1,...,n} gilt

$$\det(A) = \sum_{j=1}^{n} (-1)^{k+j} \ a_{kj} \det(A^{k,j})$$

Satz 7.10 (Cramer'sche Regel) (Gabriel Cramer, 1704-1752):

Im Gleichungssystem A·x = b sei A regulär, x =
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 und für i $\in \{1,...,n\}$ sei

 A_i diejenige Matrix, die sich aus A ergibt, indem man die i-te Spalte durch b ersetzt [vgl. folgendes Beispiel]. Dann gilt

$$x_{i} = \frac{\det(A_{i})}{\det(A)}$$

- Satz 7.11: Für $A \in K_n^n$ sind folgende Bedingungen paarweise äquivalent:
 - a) λ ist ein Eigenwert von A.
 - b) λ E–A ist singulär.
 - c) $det(A-\lambda E) = 0$ (Bemerkung: $det(A-\lambda E)$ ist ein Polynom, genannt das *charakteristische Polynom* von A)
- Satz 7.12: A und ihre transponierte A^T besitzen dieselben Eigenwerte.
- Satz 7.13: Seien A und B n × n Matrizen. Dann besitzen die Matrizen AB und BA dieselben Eigenwerte.
- Satz 7.14: Ist λ ein Eigenwert der regulären Matrix A, dann ist ein λ^{-1} Eigenwert von ihrer Inversen A^{-1} .
- Satz 7.15: Ist λ ein Eigenwert der Matrix A, dann ist λ^k Eigenwert von A^k .
- Satz 7.16: Die Determinante einer $n \times n$ Matrix A ist gleich dem Produkt der Eigenwerte λ_i von A:

$$\det(A) = \sum_{i=1}^{n} \lambda_i$$

Satz 7.17: Die Summe der Eigenwerte λ_i einer Matrix A ist gleich der Summe der Diagonalelemente (der "Spur") von A:

$$\sum_{i=1}^n \lambda_i = \sum_{i=1}^n a_{ii}$$

- **Satz 8.1:** $\sum_{x \in V(X)} d(x) = 2 |E(X)|$
- Satz 8.2: Jede Kantenfolge von x_1 nach x_n enthält einen Weg von x_1 nach x_n .

- Satz 8.3: Sind $x \neq y$ zwei Knoten des Graphen X und $K(x) \cap K(y) \neq \emptyset$, so ist K(x) = K(y).
- **Satz 8.4:** Zwei Blöcke eines Graphen X haben höchstens einen gemeinsamen Knoten und dieser ist Artikulation von X.
- Satz 8.5: Ein Knoten x ist Artikulation von X genau dann, wenn x in mindestens zwei Blöcken liegt.
- Satz 8.6: Jede Kante und jeder Kreis von X liegen in genau einem Block von X.
- Satz 8.7: Sei X ein zusammenhängender Graph und $e \in E(X)$. Dann sind die folgenden Aussagen äquivalent:
 - (i) e ist eine Brücke von X
 - (ii) e liegt auf keinem Kreis von X
 - (iii) Es gibt Knoten x und y von X, so dass e auf jedem Weg von x nach y liegt.
- **Satz 8.8:** Ist X ein Graph mit n = |V(X)| und m = |E(X)|, dann sind folgende Aussagen äquivalent:
 - (i) X ist ein Baum.
 - (ii) Je zwei Knoten in X sind durch genau einen Weg in X verbunden.
 - (iii) X ist zusammenhängend und jede Kante von X ist eine Brücke.
 - (iv) X ist zusammenhängend und m = n-1.
 - (v) X besitzt keinen Kreis und m = n-1.
 - (vi) X besitzt keinen Kreis. Verbindet man aber zwei Knoten von V(X), die nicht in X verbunden sind, durch eine Kante, so erhält man einen Graphen mit genau einem Kreis.
- Satz 8.9: Ein g.Graph X ist stark zusammenhängend, genau dann, wenn X zusammenhängend ist und jede Kante $e \in E(X)$ auf einem g.Kreis in X liegt.
- **Satz 8.10:** Ein Teilgraph T eines zusammenhängenden Graphen X ist genau dann ein spannender Baum von X, wenn folgende zwei Bedingungen erfüllt sind:
 - (i) T enthält keinen Kreis,
 - (ii) fügt man zu T eine Kante $e \in \{E(X) E(T)\}\$ hinzu, so enthält T genau einen Kreis.
- Satz 8.11: Ist X = (V(X), E(X)) ein vollständiger Graph und sind die den Kanten $e \in E(X)$ zugeordneten Zahlen g(e) paarweise verschieden, dann hat das Problem des Minimalgerüstes eine eindeutige Lösung.
- Satz 8.12: Ein binärer Baum B mit n Knoten hat
 - mindestens die Höhe $h = log_2(n+1) 1$,
 - höchstens $b = 2^h$ Blätter

bzw

ein binärer Baum B der Höhe h hat höchstens $n = 2^{h+1} - 1$ Knoten.

Satz 8.13: Es gilt $q^{n-2} \le F(n) \le q^{n-1}$ für $n \ge 1$

- *Satz 8.14:* Der Fibonaccibaum F_{h+1} der Höhe h hat F(h+3) 1 Knoten.
- Satz 8.15: Ist T ein ausgeglichener Baum mit n Knoten, dann gilt $log_2(n+1) 1 \le h(T) \le 1,4404 \cdot log_2(n+2) 1,328$
- Satz 8.16: Die Anzahl der Knoten in einem B(k,h) Baum ist mindestens $1+2 \frac{(k+1)^h-1}{k}$
- Satz 8.17: Die Anzahl der Knoten in einem B(k,h) Baum ist höchstens $\frac{(2k+1)^{h+1}-1}{2k}$
- Satz 8.18: Sind X = (V(X), E(X)) und sein komplementärer Graph $\overline{X} = (V(X), \overline{E(X)})$ gegeben, dann spannt $Q(S) \subseteq V(X)$ in X genau dann eine Clique auf (induziert sie), wenn $V(X) \setminus Q(S)$ in \overline{X} eine Knotenüberdeckung ist.
- **Satz 8.19:** Ein zusammenhängender Graph X ist genau dann ein Euler-Graph, wenn jeder seiner Knoten geraden Grad hat.
- Satz 8.20: Ist X (V(X), E(X)) zusammenhängend und eben, dann gilt |E(X)| |V(X)| + 2 = g = Anzahl der Gebiete.
- **Satz 8.21:** Ist X = (V(X), E(X)) mit $|V(X)| \ge 3$ planar, dann ist $|E(X)| \le 3 |V(X)| 6$.
- Satz 8.22: $\sum_{x \in aV(N)} \Phi(x) = 0 \text{ und } \phi(q) = \phi(s).$
- Satz 8.23 (Max- Flow-Min-Cut Theorem):

 Der maximale Wert eines Flusses φ von der Quelle q zur Senke s ist gleich der minimalen Kapazität eines Schnittes.
- Satz 8.24: Ein Matching M im Graphen X = (V(X),E(X)) ist genau dann maximal, wenn es bezüglich M keinen erweiternden Weg W gibt.
- Satz 8.25: Ein Graph X ist genau dann paar, wenn er keine oder nur Kreise mit gerader Länge enthält.
- Satz 10.1: Ist $d = d_{min}(C)$, so kann C bis zu d-1 Fehler erkennen und bis zu $\left\lfloor \frac{d-1}{2} \right\rfloor$ Fehler richtig decodieren.
- Satz 10.2: Sei C ein (n,k)-Code mit Kontrollmatrix A.
 - a) $d_{min}(C) = das kleinste Gewicht eines Codeworts \neq 0$.
 - b) $d_{min}(C) = rg(A) + 1$.

- Satz. 10.3:
 - a) rg(A) = 2, also $d_{min}(A) = 3$.
 - b) Ein Hamming-Code kann also alle Einfachfehler korrigieren und alle Doppelfehler erkennen.
 - c) Ist bei der Übertragung von x in y genau ein Fehler passiert, dann war er an der i-ten Stelle, wobei i die Binärzahl von A·yt ist. (vgl. folgendes Beispiel)
- Satz 10.4 (ohne Beweis):

Der so entstehende RS(n,k)-Code hat eine Minimaldistanz von q-k, kann also bis zu $\left\lfloor \frac{q-k}{2} \right\rfloor$ Fehler richtig decodieren.

- Satz 11.1: Die lineare Kongruenzmethode (x_0, a, c, m) hat die maximale Periodenlänge m dann und nur dann, wenn
 - (i) ggT(c,m) = 1
 - (ii) a-1 ein Vielfaches von p für jeden primen Teiler von m ist
 - (iii) a-1 ein Vielfaches von 4 ist, falls m ein Vielfaches von 4 ist.
- Satz 11.2: In einer Folge $x_{i+1} = a x_i \mod m$ wird eine maximale Periode μ erreicht, wenn
 - (i) $ggT(x_0,m) = 1 \text{ und}$
 - (ii) a primitives Element modulo m ist.

Für $m = 2^j$ gilt dann: $\mu(2) = 1$, $\mu(4) = 2$ und $\mu(2^j) = 2^{j-2}$ für $j \ge 3$.

- Satz 11.3: Ist $m = 2^j$ mit $j \ge 4$, so ist a ein primitives Element modulo m dann und nur dann, wenn entweder a mod 8 = 3 oder a mod 8 = 5 ist.
- Satz 11.4: Eine Matrix $A \in \mathbb{R}^{n \times n}$ ist genau dann diagonalisierbar, wenn sich mit n Eigenvektoren von A eine Basis von \mathbb{R}_n bilden lässt. Im dreidimensionalen Fall bedeutet dies etwa, dass es drei linear unabhängige Eigenvektoren von A gibt. Diese n Eigenvektoren bilden dann die Spalten von C und damit erhält man $A = C \cdot D \cdot C^{-1}$.
- Satz 11.5: Besitzt eine Matrix $A \in \mathbb{R}^{n \times n}$ n verschiedene Eigenwerte, so ist sie diagonalisierbar.
- **Satz 11.6:** Es ist R(E-dA) = D lösbar, wenn 0 < d < 1 gilt.